A NEW GENUS OF HENICOPID CENTIPEDE (CHILOPODA: LITHOBIOMORPHA) FROM NEW CALEDONIA

GREGORY D. EDGECOMBE

Edgecombe, G.D. 200306 30: A new genus of henicopid centipede (Chilopoda: Lithobiomorpha) from New Caledonia. Memoirs of the Queensland Museum 49(1): 269-284. Brisbanc. ISSN 0079-8835.

Abstract

Two species from New Caledonia, Easonohius tridentatus gen. et sp. nov. and Paralamyctes Inumilis Ribaut, 1923, together represent a new genus of Henicopini. South African species formerly classified together with Easonobius /umilus in Analamyctes Chamberlin. 1955, arc distantly allied, members of Paralamyctes (Paralamyctes) Pocock, 1901. Morphological characters of Easonobius, including eleetron microscopic study of the head, indicate membership in the Lamyctes-Henicops Group. Parsimony analysis favours a closest relationship between Easonobius and the Australasian genus Henicops Newport. 1844. The type species of Lamyctes (Eumyctes) Chamberlin. 1951, shares apomorphie characters with the Cape genus Lamyctopristus Attems, 1928, to which Eumyctes is transferred. I Chilopoda, Lithobiomorpha, Ilenicopidae, Easonobius, New Caledonia, taxonomy, phylogeny.

Gregory D. Edgecombe, Australian Museum, 6 College Street, Sydney 2010, Australia (e-mail: greged@austmus.gov.au); 22 March 2003.

Paralamyctes humilis Ribaut, 1923, was named based on a single, small male from Oubatche in northeastern New Caledonia. Subsequently, Chamberlin (1955) reassigned P. hnmilis to the genus Analamyctes Chamberlin, 1955, and, more precisely, to an invalidly erected subgenus Capolamyctes. Analamyctes (Analamyctes) was conccived as occurring in Argentina (the type species A. tnermams Chamberlin, 1955, from Tucumán Province, and Paralamyctes andinus Silvestri, 1903, from Mendoza Province). Analamyctes (Capolamyctes) reccived species from the Cape region of South Africa (Paralamyctes aspernlus Silvestri, 1903; P. Levigatus Attems, 1928; P. tabulinns Attems, 1928) together with the New Caledonian P. humilis.

In a revision of Paralamyctes Pocock, 1901, Edgecombe (2001) dismissed Chamberlin's (1955) reassignment of South African species to Analamyctes, these taxa being acconmmodated within a monophylctic Paralamyctes (Paralamyctes) Pocock, 1901. This conclusion is supported by both morphological (Edgecombe, 2003a) and molecular data (Edgecombe \& Giribet, 2003a). A reconsideration of Analamyctes was made possible by a restudy of its type specics, A. Incumamis. Argentinian spccies of Analamyctes are members of a LamyctesHenicops Group, only distantly allied to P. (Paralanyctes) (Edgecombe, 2003b).

The present study reconsiders Paralamyctes hnmilis, which until now has defied phylogenetic
placement. Ncw collections made by G. B. Monteith (Queensland Museum) in New Caledonia include additional specimens of both sexes of this species, as well as specimens that represent another, closely related species. Morphology of thesc specics is documented by election microscopy, including mouthparts that have proven useful in henicopid systematics, and they are are coded for their morphological characters in a datasct for henicopid phylogeny.
Institutional abbreviations eited in this work are: AM - Australian Museum. Sydney; MNHN - Muscum National d'Histoire Naturelle, Paris; QM - Queensland Museum, Brisbane; ZMB Muscum für Naturkunde, Bcrlin. Morphological terminology is as explained by Edgecombe (2001: 203). Drawings were prepared with a camera lucida attachment to a Leica MZ12. Scanning electron microscopy used a Leo 435 VP with a Robinson backscatter dctector, and digital images assembled into plates with Photoshop.

SYSTEMATICS

Easonobius gen. nov.
parlim Analamyctes (Capolamyctes) Chamberlin, 1955 nomen nudum.
TYPE SPECIES. Easonobius tridentatus gen. et sp. nov.
ETYMOLOGY. In honour of Dt Edward H. Eason (1915-1999), for his contributions to lithobiomorph systematics, with the standard suffix, obbius.
DIAGNOSIS. Mcinber of Lamyctes-Henicops Group lacking pseudoporodont (shared with

Henicops and Analamyctes); posterior angles of tergites 7, 9, 11 and 13 produced (shared with Hemicops and Lamyctopristus); dental margin of maxillipede coxosternitc with $2+2$ or $3+3$ teeth; tarsi of all legs bipartite (shared with Analamyctes); coxal process of first maxilla with laciniate or plumose setae near dorsal margin (shared with Henicops); mandible with single row of exclusively bipinnulate aciculae; last distal spinose projection on tibia of leg 13; tirst genital sternite of ot undivided (plesiomorphies excluding membership in Henicops). Antenna with 26-33 articles; tergite of intermediate segment with strongly concave posterior margin.

ASSIGNED SPECIES. Paralanyctes lumilis Ribaut, 1923.

DISCUSSION. Chamberlin distinguished two subgenera of Analamyctes in a key, using a single character. Analamyctes (Analamyctes), grouping the Argentinian species A. tucumanus and A. andinus, was defined based on 'posterior angles of none of the dorsal plates produced'. Analamyctes (Capolamyctes) grouped A. humilis with three nominal South African species of Paralamyctes (Edgecombe, 2001, 2003a). Analamyctes (Capolamyctes) was distinguished based on 'postcrior angles of tergites 9,11 and 13 or $7,9,11$ and 13 produced'. Though Chamberlin was explicit about the membership and diagnosis of Capolamyctes, he neglected to designate a type species. The name fails Article 13.3 of the ICZN Code, and is dismissed as a nomen mudum. As argued in detail below, the original concept of Capolamyctes delimits a polyphyletic group. Of Chamberlin's assigned species, only Paralamyctes Inumilis is at all closely related to the type species of Analamyctes.

Easonobius resembles Analamyctes in having bipartite tarsi on all legs, a state restricted to these taxa within the Lamyctes-Henicops Group (but possibly plesiomorphic by comparison to Paralamyctes and Zygcthobiini). Easonobins most obviously differs from Analamyctes in its tergal shapes, as used in Chamberlin's (1955) subgeneric scheme, with projections on TT7, 9, 11 and 13 versus nearly transverse margins in Analamyctes. This does not in itsclf obviate a close relationship, since tergite projections occasionally vary within some well defined henicopine clades, such as Paralamyctes (Haasiella), e.g., present in P. (H.) subicolus and P. (H.) trailli; absent in P. (H.) cammooensis and P. (H.) ginini.

Easonobius is resolved as most closely related to Henicops Newport, 1844, in the best supported phylogenetic analyses, described below. However, several apomorphic characters unite Australian and New Zealand members of Henicops in the traditional sense (c.g., Attems, 1914, 1928; Chamberlin, 1920; Archey, 1937) as a clade that excludes Easonobius. These characters (numbercd as in Table 1) include a subdivision of the basitarsus indicated by paired larger setae ($40: 1$), the first genital sternite of the δ being divided longitudinally into two sclerites (43:1), the distitarsus of leg 15 being divided into tarsomeres (53:1), and more sctose gonopods in both sexes. Henicops as traditionally delimited is strongly supported (jackknife frcquency 99%; Fig. 8), and it is not expanded in scope and rediagnosed to incorporate the species here recognised as Easonobius.

Comparable in several respects is a group of mostly Southern African species referred to Lamyctes (Eumyctes) Chamberlin, 1951 [type Henicops sinuatns Porat. 1893] and L. (Neomyctes) Chamberlin, 1951 [typc Lamyctes (Neomyctes) ergus Chamberlin, 1951]. These are distinguished from typical Lamyctes Meinert, 1868. by their projections on tergites 9,11 and 13. The style of tergite projections in species such as L. (Eumyctes) simuatus is as in Easonobius, and these species also sharc a strongly concave posterior margin to the tergite of the intermediate segment (Attems, 1909, fig. 53). Chamberlin's (1951 versus 1955) distinction between Ennyctes/Neomyctes and Analamyctes (including E. humilus) placed fundamental weight on the absence or presence of a tarsal articulation. A closer relationship can be proposed for the type of Eumyctes, L. (E.) sinuatus, and the Cape genus Lamyctopristus Attems, 1928, than the former shares with Easonobins. Lamyctes (Eumyctes) sinuatus has dense, strongly developed tuberculation on the tergites, to a degree observed only in Lamyctopristus amongst all known Henicopidae. In both L. (E.) simuatus and L. gramulosus ($=$ L. validus?), tuberculation is more pronounced on the malc than on the female (Lawrence, 1955: 23). e.g., being well developed on the head shield of the male. These species arc also similar, and resemblc Henicops Ncwport, 1844, in having tergite projections and distal spinose projections on the tibia of lcg 14. They share other peculiar characters in addition to their tergal tubcreulation. In Lamyctopristus validus as well as Lamyctes (Eumyctes) sinuatus, the tarsi of

FIG. I. A-F, Lamyctopristus (Eumyctes) simuatus (Porat, 1893). ZMB 4962, 9 , Kamaggas, Northern Cape Province. South Africa. A-E, mandible. A, medial view of gnathal edge, scale $100 \mu \mathrm{~m} ; \mathrm{B}$, ventral part of gnathal edge. seale $50 \mu \mathrm{~m}$; C, dorsalmost tooth and furry pad, scale $20 \mu \mathrm{~m}$; D-E, aciculac, scales $20 \mu \mathrm{~m}, 10 \mu \mathrm{~m}$; F, antcrior view of pretarsus, seale $30 \mu \mathrm{~m}$. G, Henicops maculatus Newport, 1844. Anterior view of pretarsus of leg 14, scale $15 \mu \mathrm{~m} . \mathrm{H}$, Paralamyctes (Paralamyctes) asperulus Silvestri, 1903. SAM-ENW-C5314. Anterior vicw of prctarsus of $\operatorname{leg} 14$, seale $15 \mu \mathrm{~m}$.

FIG. 2. A, Lamyctopristus (Eumycles) sinuatus (Porat, 1893). ZMB 4962, \&, Kamaggas, Northern Cape Province, South Afriea, terminal segments and gonopods, seale $200 \mu \mathrm{~m}$. B-F, Easonobius tridentatus gen. et sp. nov. QM S60291, $\$$, Pie d'Amoa. Seale in B applies to C-E. B, leg 12 , scale $200 \mu \mathrm{~m} ; \mathrm{C}$, leg $13 ;$ D, leg 14: E, leg 15; F, distal part of tarsus and pretarsus of leg 15 , seale $100 \mu \mathrm{~m}$.
anterior legs have a distinct curvature within the distitarsal portion, this occurring despite the lack of articulations. Mandibular characters (Fig. 1) are also consistent with a close relationship between L. (Eumyctes) sinnatus, Lamyctopristus and Henicops. The former specics has a large number of aciculae on the mandible, with the density and arrangenent of the aciculae two-deep (Fig. 1B, D), rather than a single row, being otherwise observed only in Lamyctopristus validus (Edgecombe, 2003b, fig. 34D) and in all specics of Henicops (Edgecombc et al., 2002, fig. 5C). Also as in Henicops and Easonobius, but not Lamyctes, the accessory denticles on the dorsalmosi tooth of the mandible are simple, angular elements (Fig. 1C), rather than multifurcating scales (Edgecombe et al., 2002, fig. 7B, for Lamyctes emarginatus). As well, the novel expansion of basal article of the femalc gonopod in Lamyctopristus may have a precursor in the relative breadth of this article in L. (E.) sinnatus (Fig. 2A). Phylogenctic analysis including these characters (see bclow) recognises L. (Enmyctes) sinuatus as more closely related to Lamyctopristus than to Lamyctes. To incorporate this relationship into the classification, Eumyctes is reassigned to Lamyctopristus.

FIG. 3. Easonobius tridentatus gen. et sp. nov. A, MNHN P244, holotype f, Pie d'Amoa, dorsal habitus, scalc $1 \mathrm{~mm} ;$ B, QM S60291, 9 , Pic d'Amoa, terminal segments and gonopods, seale $100 \mu \mathrm{~m} . \mathrm{C}$, QM S60292, ó, Aoupinie, terminal segments and gonopods, scale $100 \mu \mathrm{~m}$.

Easonobius tridentatus sp. nov.
(Figs 3-6)
DIAGNOSIS. Easonobius with width of hcad shield up to 1.5 mm ; penultimate and preceding few antennal articles as wide as or wider than long; dental margin of maxillipede coxosternite moderately wide, gently convex, with $3+3$ tecth; Tömösváry organ small; a fcw lacinate sctae on coxal process of first maxilla; postcromedian embayment in margin of T7 transverse or faintly convex; short, spinule-like sctac on tergites and along tergal margins.

ETYMOLOGY. For the three teeth on the dental margin of the maxillipede coxosternite.
MATERIAL. HOLOTYPE. MNHN P244, \circ (Fig. 3A), Pie d'Amoa, N slopes, Province Nord, New Caledonia, $20^{\circ} 58^{\circ} \mathrm{S} 165^{\circ} 17^{\prime} \mathrm{E}, 500 \mathrm{~m}, \mathrm{~GB}$. Monteith, 24 November 2001-31 January 2002. PARATYPES. QM S60291, if

FIG. 4. Easonobius tridentatus gen. et sp. nov. SEMs, scales $100 \mu \mathrm{~m} \operatorname{execpt} \mathrm{G} 10 \mu \mathrm{~m}$. QM S60291, $\%$, Pic d'Amoa. A, dorsal view of anterior part of head, proximal part of antennac; B, D, E, dorsal side of antenna; C, ventral view of clypcus and selcrotised bridge between antennae; F-G, cephalic pleurite and detail of Tömösváry organ.

FIG. 5. Easonobins tridentatus gen. et sp. nov. SEMs, seales $100 \mu \mathrm{~m}$ cxeept F, $50 \mu \mathrm{~m}$, G-11, $20 \mu \mathrm{~m}, 1.2 \mu \mathrm{~m}$. A-F, 1 , QM S60291, ${ }^{\circ}$, Pic d'Amoa. A, ventral view of maxillipede; B, detail of dental margin of coxosternitc; C, maxillipede telopodite; D, dorsal view of coxostemite; E, second maxilla; F, tarsus and claw of second maxilla; 1, distal part of lacinate seta on coxal process of first maxilla. G-H, AM KS 81365, 오, Pic d'Amoa, dorsal and posterior views of claw, accessory claws and sensory spur of leg 14.
(Figs 2B-F, 3B, 4, 5A-F, I, 6), AM KS 81365. \% (Fig. 5G-H), from type locality, GB. Monucith, 31 January 2002. OTHER MATERIAL. New Caledonia, Icg. G.B. Monteith. PROVINCE NORD: QM S60292. σ° (Fig. 3C), $21^{\circ} 1 I^{\prime} \mathrm{S} 165^{\circ} 18^{\circ} \mathrm{E}$, Aoupinic, top camp, $850 \mathrm{~m}, 2-4$ November 2001. PROVINCE SUD: QM S60293, Jै, $21^{\circ} 45^{\prime} \mathrm{S} 166^{\circ} 00^{\prime} \mathrm{E}, \mathrm{Mt}$ Do summit. 1000 m . 21 Novenber 2000.

DESCRIPTION. Length (head shield to end of telson, slightly extended speeimen) up to 16 mm ; width of head shield up to 1.5 mm . Colour (based on speeimens in absolute ethanol): head shield orange with purple mottling. including region surrounding oecllus: antenna pale orange, sometimes with pale lavender tint along most of length; tergites lavender with deep purple longitudinal median band and mottling beside/on borders; sternites pale lavender except for orange sternites 14 and 15 ; legs pale yellow exeept for pale yellowish-orange tarsi.
Head shield. Wider than T1-T5, equally wide as T7, with shallow median noteh, laeking longitudinal median furrow (Fig. 4A); maximal posterior extent of transverse suture at about 26% length of head shield; border as wide medially as posterolaterally. Ocellus large, moderately domed (Fig. 4A). Tömösváry organ relatively small (Fig. 4G), with outer margin near edge of cephalie pleurite, beneath oeellus (Fig. 4F).

Clypeus with eluster of about six apieal setae (anterior pair and transverse band of three or four), several smaller setae seattered posterolateral to these (Fig. 4C); usual band of four setae just in front of labrum. Labral margin gently coneave where eluster of bristles projeets beyond margin; numerous branehes along length of eaeh bristle.
Antenna. 34-38\% length of body, 3.7 times length of head shield in largest specimen (Fig. 3A): 31-27 and 31-31 artieles in 9 ㅇ.30-30 and 31-30 in $0{ }^{\circ} 0$: basal two artieles mueh enlarged relative to others (Fig. 3A); artieles 3-4, 7-8, 10-11 and one or two more distal pairs short. Terminal article up to 2.2 times length of penultimate; most of distal artieles of similar shape, slightly wider than long (Fig. 4D). Setal density similar from third artiele, with mix of longer trichoid sensilla and shorter curved sensilla (Fig. 4B, E): most setac oriented normal to antennal surfaee or sloping anteriorly, arranged in impreeisely defined whorls. as many as seven whorls on longer articles.
Maxillipede. Dental margin gently eonvex, with $3+3$ teeth; outer tooth more distant than inner pair to eaeh other (Fig. 5B), well inside anterolateral eorner of dental margin. Median noteh
moderately deep, parabolic or semieireular. Setae rather evenly seattered over anterior two-thirds of coxosternite (Fig. 5A); irregular band of short setae on anterior part of dorsal surfaee of coxosternite (Fig. 5D). Pretarsal part of tarsungulum about equal in length to tarsal part: long setae distinetly denser on imner side of tarsungulum than on outer (Fig. 5C); setation on tibia and femur fairly even on inner, outer and ventral sides.
Mandible. Four paired teeth (Fig. 6A). Eleven aeieulae, eaeh with large, blunt pinnules approximately symmetrical on anterior and posterior margins (Fig. 6C-D). Fringe of branehing bristles skirts aeiculac; ventral bristles with moderately wide bases, with even. rather dense branchings along entire length of each bristle (Fig. 6B); fairly abrupt transition to three overlapping rows of multifureating seale-like bristles against second tooth: seales braneh near their bases to form eontinuous fringe of slender, hair-like spines; fringe narrowing dorsally. Grooved ridges bearing row of blunt aecessory denticles well developed on teeth (Fig. 6A-B); most accessory dentieles small, triangular, even on dorsal tooth (Fig. 6E). Proximal part of dentate lamina consists of a narrow band of fused seales, strongly differentiated from furry pad (Fig. 6E); furry pad composed of simple and multifureating bristles.
First maxilla. Coxal parts of eoxosternum meeting along most of their length medially (Fig. 6 F), separated posteriorly by small, wedgeshaped sternite. Coxal process with eluster of up to 15 simple setac at tip, a few setae along inner margin: four or five laeiniate setae above simple setae near dorsal edge of eoxal process (Fig. 6H). thieker than simple setae, branching into up to five short spines at their distal tips (Fig. 51). Distal artiele of telopodite with two rows of up to 14 plumose setae along inner margin (Fig. 6G); plumose setal rows fringed along ventral side by row of shorter simple setac, along dorsal side on anterior half of artiele by row of slender spines, these more densely spaeed than simple or plumose setae (Fig. 6G); ventral surfaee of distal artiele with numerous, evenly seattered simple setac.
Second maxilla. Sternite fused to eoxa, margins distinet. Irregular band of about eight setae aeross anterior part of coxa (Fig. 5E). Joint between trochanter and prefemur defined as a noteh along inner margin of telopodite (Fig. 5E). Inner faee of tarsus with up to about 20 plumose setae, densely branching along their distal halves (Fig. 5F). Pretarsal elaw small, eomposed of up to five

FIG. 6. Easonobius tridentatts gen. et sp, nov. SEMs. QM S60291, \%, Pic d'Amoa. A-E, right mandiblc. A, gnathal lobe, seale $50 \mu \mathrm{~m}$; B, fringe of branching bristles and teeth, scale $10 \mu \mathrm{~m}$; C-D, aciculac, scales $10 \mu \mathrm{~m}$; E, furry pad, scale $10 \mu \mathrm{~m}$; F, first maxillac, scale $100 \mu \mathrm{~m}$; G, distal article of telopoditc of first maxilla, scalc $50 \mu \mathrm{~m}$; H , laciniate setac on coxal process of first maxilla, scale $10 \mu \mathrm{~m}$.
digits of varied length and thickness, median digit the largest (Fig. 5F).
Tergites (Fig. 3A). Weakly wrinkled, gently turned up against borders. Tl trapeziform, anterior width slightly less than $\mathrm{T} 3,81 \%$ width of widest tergite (T10), posterior margin transverse or faintly concave; posterior angles of TT1-5 rounded; lateral border subparallel in T3, posterior margin faintly or weakly concave; posterior margin of T5 distinctly concave, that of T8 slightly more so; TT9, 11 and 13 with strong, blunt projections and wide, transverse or convex median seetor; T7 with shorter projections, median sector subtransverse or weakly convex: TT2, 4 and 6 bordered laterally, thiekened posteromedially: TT10, 12 and especially 14 with coneave posterior margins, blunt posterior angles. Tergite of intermediate segment with coneave posterior margin in both sexes. Tergite of first genital segment less selerotised than telson tergite. Short, spinule-like setae seattered aeross anterior third and laterally on long tergites; numerous short, spinule-like setae along lateral margins of tergites.
Legs. Distal spinose projection on tibiae of legs 1-13 (Fig. 2B, C), absent on 14 (Fig. 2D) and is (Fig. 2E). Legs 12-15 with length ratios 1: 1.2 : 1.6:2.5. Tarsal joints marked by deselerotised band and weak flexure on anterior legs. articulation weakly continuous on dorsal side of leg; distitarsus about 55% length of basitarsus on leg 12 (Fig. 2B), 63% length of basitarsus on leg 15; leg 15 basitarsus nine times longer than wide, distitarsus about 10 times longer than wide, tibia 5.5 times longer than wide (Fig. 2E). Prefemur with numerous short setae on dorsal and ventral sides, with one or a few longer setae near midlength on ventral side of legs $1-13$; more evenly short setae on prefemur of legs 14-15; setae relatively fewer on femur and tibia, of similar size to most on prefemur, densest on tarsus; short setae on distitarsus of legs 1-14 sloping distally; setae relatively sparse on tibia and tarsus of leg 15. Anterior and posterior pretarsal accessory elaws nearly symmetrical on all legs, about half length of main claw, weakly diverging (Fig. 5G); minute sensory spine on posterior side of claw base (Fig. 5H). laeking on anterior side.
Coxal pores. All round, separated by less than their diameter when abundant, inner pores smaller; $4,5,5,5 / 4,5,5,5$ in largest ㅇ, 3,4,5,5/3,4,5,5 (Fig. 3B) and 2,3,4,4/2,3,4,4 in progressively smaller \circ 옹 $3,3,4,3 / 3,3,3,3$ in largest oै $^{2}, 1,2,2,2 / 1,2,2,2$ in smaller ${ }^{\circ}$ (Fig. 3C);
pore row not set in a groove, separated from anteroventral face of coxa by rounded surface.
Female (Fig. 3B). Sternite of segment 15 weakly to gently convex posteromedially, fringed with short setae along posterior margin. Setae fairly evenly seattered on posterior two-thirds of sternite of first genital segment, few or lacking on anterior third; transverse band of setae slightly in advance of posterior margin. Gonopod with two relatively small, conical spurs, inner spur slightly smaller; up to 20 setae on basal article of gonopod, up to 8 on second artiele, two or three on distal artiele; claw simple.
Male (Fig. 3C). Sternite of segment 15 weakly convex posteromedially, most setae along margins. Sternite of first genital segment undivided, a few setae in front of posterior margin. Articles of gonopod with four, two, and one small setae (proximally to distally).

DISCUSSION. Specimens assigned to Easonobius tridentatus sp. nov. resemble E. Inmilis (Ribaut) in having a similar number of antennal artieles (27-3) in the new species versus $26-33$ in E. hmmilis), projections with the same shape on tergites 9,11 and 13, a bipartite tarsus on legs $1-12$, and absence of a pscudoporodont. The holotype of Easonobius humilis is a small male (width of head 0.75 mm ; length of body 6.6 mm) lacking most legs, and no other material was assigned to the speeies by Ribaut (1923). The original illustrations are accurate exeept for the position of the Tömösváry organ, which was depicted as anterior to the ocellus (Ribaut, 1923, fig. 24) when in fact the organ lies beneath the ocellus in the holotype and in new specimens assigned to the species, as is also the case in E. tridentatus. Ribaut noted 33 antennal artieles in the deseription based on the right antenna: the unfigured left antenna has 30 artieles.
All specimens of Easonobius tridentatus are larger than specimens of E. humilis, and all have $3+3$ teeth on the dental margin of the maxillipede (Fig. 5A-D) versus $2+2$ teeth on a narrower margin in E. humilis (Fig. 7A-B). Although some henicopids have an ontogenetic increase in number of maxillipede teeth [Paralamyctes validus: Arehey, 1921: 182; Anopsobius neozelanicus: Arehey, 1937: 87: Paralamyctes (Haasiella) cammooensis: Edgecombe, 2003b], tooth numbers in the Lamyctes-Henicops Group are lixed early in ontogeny when the adult number is $2+2$ or $3+3$ teeth. For example, the dental formula $3+3$ is complete by 8 -legged larval stadium LII in Henicops from Victoria,

FIG. 7. Easonobius humilis (Ribaut, 1923). AM KS 81366, ․ Mt Koghis. A, ventral view of maxillipede, scalc $100 \mu \mathrm{~m}$; B, detail of dental margin of maxillipede coxosternite, scale $50 \mu \mathrm{~m} ; \mathrm{C}$, ventral part of mandibular gnathal cdge, showing aciculae, scalc $10 \mu \mathrm{~m}$; D, dorsal vicw of coxal proccsses of first maxillae and inner margins of telopodites, scalc $20 \mu \mathrm{~m}$: E, cephalic pleurite, showing Tömösvary organ, seale $50 \mu \mathrm{~m}$; F distal articles of antenna, scale $50 \mu \mathrm{~m}$; G, gonopods, scale $50 \mu \mathrm{~m}$.

Australia (Museum Victoria NOH-1778, 1782, 1786), and the coxosternite shape more closely rescmbles the adult shape than is the case between the mueh more similar sized specimens of E. humilis and E. tridentatus. Lamyctes fulvicornis ($=$ L. emarginatus) likewise acquires its adult dental formula ($2+$ pseudoporodont) in LII, and the LII dental margin is similar to that of the mature stages (Andersson, 1984, fig. 6). The substantial differences between the coxosternal shape of E. humilis and the smallest speeimens of E. tridentatus are thus unlikcly to be attributable to ontogenetie change in a single species.

A few other differences between small (E. Inmilis) and larger (E. tridentatus) spceimens are atypieal for ontogenetic variation. The holotype of E. humilis and two additional specimens assigned to that specics have a prominently rounded (convex) median sector to the posterior margin of T7, whereas this sector of the margin is at most weakly convex in E. tridentatus. Elaboration of tergal margins is typically enhaneed, rather than suppressed, in lithobiomorph ontogeny (e.g., projections become more prominent: Andersson, 1981) so the modified margin of the small specimens appears to have taxonomic significance. The holotype of E. humilis and 9 QM 560637 have a rclatively longer antenna than do any specimens of E. tridentatus, the elongation deriving from a larger number of articles (maximum 33 in these specimens) and an clongation of the distal artieles. The penultimate and adjacent artieles in E. Inmilis are longer than wide (Fig. 7F), the reversc of the condition in E. tridentatus (Fig. 4D). The δ gonopod of the holotype of E. humilis (Ribaut, 1923, fig. 26) is more setose than is that of larger specimens of E. tridentatus (Fig. 3C).

Easonobius tridentatus (Fig. 4F) has a substantially smaller Tömösváry organ than docs E. humilis (Fig. 7E). This diffcrence may be size-related because several small Henicopidae have large Tömösváry organs; this is observed repeatedly in blind lincages [Anopsobiinae; Lamyctes coecuhus; Paralamyctes (Haasiella) trailli] but also in some small spceies that retain ocelli [P. (Haasiella) cammooensis and P. (H.) gimini].

Modified setae on the coxal process of the first maxilla also serve to distinguish the species. Easonobins tridentatus has several lacinate setae near the dorsal margin of the coxal proecss, above the main cluster of simple sctac (Figs. 5I), with branching confined to a few spines at the
distal tip of the setae (Fig. 6H). In E. humilis, a single plumose seta (Fig. 7D) is instead present in addition to the simple setae.

Easonobius humilis (Ribaut, 1923)
(Fig. 7)
Paralamyctes humilis: Ribaut. 1923: 23, figs 24-26.
Paralamyctes humilis: Würnli, 1974: 526, fig. 2.
Analamyctes humilis: Chamberlin, 1955: 50.
Analamyctes humilis: Edgecombe, 2001: 206.
DIAGNOSIS. Wide head shield $0.75-0.8 \mathrm{~mm}$; penultimate and preeeding few antennal artieles longer than wide; dental margin of maxillipede coxosternite narrow, with $2+2$ teeth, margin strongly sloping posterolaterally distal to outer tooth; Tömösváry organ large: single plumose seta near dorsal edge of coxal process of first maxilla; posteromedian embayment in margin of T7 convex; tergites lacking spinule-like setae.

MATERIAL. HOLOTYPE. Naturhistorisches Museum Basel, Zoologische Abreilung 303a. of, Oubatche, Province Nord, New Caledonia. OTHER MATERIAL, New Caledonia, leg. GB. Monteith. PROVINCE SUD: AM KS 81366, of (Fig. 7A-G), Mt Koghis, $22^{\circ} 11$ 'S $166^{\circ} 01^{\prime} \mathrm{E}, 750 \mathrm{~m}, 29$ November 2000; AM KS 82627, o', Mt Koghis, 500 m .2 2-3 November 2002; QM S60637, \circ, S60651. if, Mt Humboldt, source, $21^{\circ} 53^{\prime} \mathrm{S} 166^{\circ} 24^{\prime} \mathrm{E}$, $1300 \mathrm{~m}, 5-8$ November 2002, rainforest.

DISCUSSION. Specimens from Mt Koghis (Fig. 7) and Mt Humboldt are assigned to E. Iumilis despite the substantial geographie distance from the type loeality. The specifie diagnosis indicates characters that those specimens share with eaeh other to the exclusion of the larger E. tridentatus. The five specimens have a maximum number of $26,28(\mathrm{~N}=2)$ and $33(\mathrm{~N}=2)$ antennal articles. The strength of tarsal artieulations on anterior legs varies between specimens from the same loeality (faint on Mt Humboldt specimen QM 560637 as in the holotype; well defined on Mt Humboldt speeimen QM S60652). Coxal pore counts are 1,1,2,2/1,1,2,2 (holotype) and 1,2,2,2/0,2,2,2 (AM KS 82627) in males and $1,2,2,2 / 1,2,2,2$ in females. The female gonopods (Fig. 7G) have a pair of bullet-shaped spurs with their bases adjacent to caeh other (sce also Würmli, I974).

PHYLOGENETIC RELATIONSHIPS

Morphological charaetcrs of Easonobius Inmilis and E. tridentatus are seored for the character set of Edgecombe (2003b). Several new characters (characters 52-57 in Table 1) bear on the relationships of Henicops and Lamyctopristus. Other than adding the two New Caledonian spccies, taxonomic sampling is as in

Edgccombe (2003b) cxcept for the inclusion of Lamyctopristus (Eunyctes) sinuatus (Porat. 1893), as discussed above, and Paralanyctes (Paralamyctes) asperulus Silvestri, 1903 ($=$ P. tabulinus Attcms, 1928; sce Edgecombe, 2003a). This spccics is included to test Chamberlin's (1955) concept of a New Caledonian/South African clade (his 'Capolamyctes' concept).

Data were analysed with PAUP* version 4.0bl0 (Swofford. 2002). A heuristic search used 5,000 random stepwise addition sequences that sampled five trecs per iteration, followed by TBR (tree bisection-reconncction) branch swapping on these trees. Cladograms were rooted with Lithobiidae as outgroup to Henicopidae. Multistate characters were coded as unordered. Node support was evaluated via parsimony jackknifing (Fartis et al.. 1996). Jackknife frequencies were computed with PAUP* with 1000 replicates having 33% deletion. Each jackknife replicate involved a heuristic search with 20 random stepwise addition replicates and TBR branch swapping on 20 trees per replicatc.

With the above analytical procedures, 4.233 shortest cladograms of 135 steps (Consistency Index 0.54; Retention Index 0.82; Rescaled Consistency Index 0.44) were found in all 5.000 replicates. Figure 8 depicts clades resolved in more than half of the jackknife replicates, indicating which of these groups arc collapsed in the strict consensus. All clades with more than 50% jackknife support are present in all shortest cladograms.

A Lamyctes-Henicops Group is onc of the most strongly supported clades in Henicopidac based on molecular data (Edgecombe et al., 2002; Edgecombe \& Giribet, 2003b). This group. which includes the nominate gencra together with Analamyctes, Easonobius, Eumyctes and Lamyctopristus, is supported in 78% of the shortest morphological cladograms, with a
jackknife frcquency of 58%. Apomorphics indicating membership of Easonobius in the Lamyctes-Henicops Group are the alternation of groups of short and long antennal articles (Fig. 4 E) and an abrupt transition in the structurc of the fringe of branching bristles on the mandible (characters $4: 1$ and $25: 1$, respectively). Within the group, only Henicops and a clade that unites Eumyctes and Lamyctopristus are present in all minimal length cladograms and have strong jackknife support (both 99%); the interrelationships of species assigned to Lantyctes,

TABLE 1. Morphological characters used in phylogenctic analysis (see Edgecombe et al., 2002; Edgecombe, 2003b, for descriptions and discussion of characters 1-51).

1. Ocelli: (0) cluster of ocelli; (1) single occllus.
2. Convexity of ocellus: (0) bulging; (1) flattened.
3. Antennal segmentation: (0) 17 or more segments; (1) 15 segments.
4. Change in lengths of antennomeres: (0) gradual change in length along antenna; (1) markedly uneven in proximal part of antenna, with short, paired antennomeres interspersed between groups of longer ones.
5. Long, tubular antennomeres: (0) snme antennomeres equally wide and long, proximal two antennomeres much larger than succeeding few; (1) all antennomeres longer than wide, proximal two antennomeres not substantially larger than succeeding few.
6. T5mösvary organ: (0) on small sclerotisation anteroventral to oecllı; (1) rtear margin of cephalic pleurite: (2) near midwidth of cephalic pleurite.
7. Tömösvary organ on margin of head: (0) organ on surface of cephalic pleurite; (l) organ in membranuus field on margin nf head.
8. Median furrow on head shield: (0) terminates in front of transverse suture: (1) deep and continuous to transverse suture.
9. Shoulder in labral margin, (0) absent; (1) present.
10. Pleurites of maxillipede segment connected ventrally, forming a continuous band between maxillipede coxusternite and stemite of first pedigerous segnent: (0) pleurites discontinuous; (1) pleurites continuous.
11. Shape of maxillipede coxosternite: (0) subiriangular coxostemite with narruw, eurved dental nargin; (1) subtrapezoidal coxosternite with narrow, straight dental margin; (2) narrow dental margin, markedly Veshaped, with deep median notch: (3) subsemicircular coxosternite with wide, convex dental margin: (4) trapezoidal coxosternite with narrow, eurved dental inargin; (5) wide, subtransverse dental margin; (6) narrow, straight dental margin projected forward: (7) trapezoidal cuxostennte with moderately wide. weakly V-shaped dental margin.
12. Paired cusps un teth on maxillipede coxosternite: (0) absent (unpaired, eonical teeth); (1) present.
13. Porodont: (0) absent; (1) translucent, seta-like porodont; (2) conieal, tuothrlike pseudoporodont.
14. I'ropnrtions of maxillipede tarsungulum: (0) pretarsal section of approximately equal lengtli to tarsal section; (1) pretarsal section mueh longer than tarsal section.
15. Dense setation on inner part of maxillipede libia and femur: (0) absent; (1) present.
16. Body namuwed across anterior part of tunk: (0) T 1 of similar width to head and T3; (1) T1 markedly narrower than heid and T3.
17. Angulation (projections) of posterolateral comers of tergites: (0) some angular or toothed; (1) all rounded.
18. Posterior margin of tergite 7 embayed, with median sector straight and thickened ventmlly: (0) ahsent; (1) present.
19. Course of posterior margin uf tergite $8:(0)$ concave; (1) transverse.
20. Spiracle un first pedigerous trunk segment: (0) absent; (1) present.
21. Row of digitifurm pinnules with pointed tips along dorsal edge of aciculae: (0) absent: (1) present.
22. Enire acicula series simple: (0) absent; (1) present.
23. Fringc of branching bristles on mandible: (0) extends along entire gnathal margin, skirting aciculae; (1) torminates at aciculac.
24. Ventral bristles in fringe on mandible with a wide basc: (0) absent; (1) present.
25. Differentiation of branching bristles on mandible: (0) branching strueture of bristles grades evenly along fringe; (1) abrupt transition between rows of scale-like bristles and single row of plunnose bristles.
26. Width of fringe of branching hristles dorsally: (0) fringe narrowed dorsally, not developed along all bristles of furry pad; (1) fringe wide, dense, developed along whole length of furty pad.
27. Accessnry denticles on mandible all triangular, enntinuous betweenteeth, without grooved ridges on tecth: (0) absent; (1) present.
28. Furty pad intergrades with aceessory denticles: (0) absent; (1) present.
29. Shipe of first maxillary sternite: (0) small, wedge-shaped, with median suture; (1) large, bell-shaped, coxae not merged anterior to sternite, suture between coxa and sternite confined to posterior edge of maxilla.
30. Basal joint of telopodite of first maxilla fused on inner side to coxal process: (0) telopodite distinctly demarcated: (1) telopodite fused to adjacent part of coxa.
31. Setae on coxal process of first maxilla: (0) dense cluster of differentiated setae; (1) simple setac; (2) laciniate setae or plumose amidst simple setac.
32. Coxa of leg 15 with long, lobate process ending in a spine: (0) absent: (1) present.
33. Prefemur ufleg 15 with spurs: (0) spurs absent; (1) single ventral spur; (2) scveral spurs in a whorl.
34. Coxal pnres: (0) on legs 14 and 15 only: (1) on legs $13-15$ only; (2) on legs 12-15 only; (3) on legs 11-15.
35. Cuxal pores set in deep gruove, largely concealed by anteroventral face of coxa in ventral view: (0) absent: (1) present.
36. Distal spinose projections on tibiae of legs 1-11: (0) absent; (1) present.
37. Distribution of distal spinose projections on tibiac: (0) strong projection on legs ! 11 only (weak prujection variably distinct on leg 12); (1) strong projection on legs 1-12 only; (2) strnng projection on legs 1-13 unly; (3) strong projection on legs 1-14 only; (4) strong projection on legs 1-15.
38. Tarsus oflegs 1-12: (0) divided into basitarsus and distitarsus; (1) undivided.
39. Artieulation between basitarsus and distitarsus on anterior pairs of legs: (0) distinct on dorsal side of leg; (1) fused on dorsal side of leg, distinct ventrally.
40. Subdivision of basitarsus indicated by paired larger setac: (0) absent: (1) present.
41. First tarsal segment uf legs 1.12 bisegmented (tripartite tarsus): (0) absent; (1) present.
42. Aecessory apical claws: (0) anterior and posterior accessory claws; (1) postcrior accessory claw only. Supposed absence nf an anterior aceessory claw in Lamuctopristus validus (Edgecumbe. 2003b) is in error. A leg assuciated with the holotype has an anterior and posterior accessory claw.
43. First genital stemite of δ divided longitudinally into two sclerites: (0) undivided; (1) divided.
44. Segmentatinn of δ gonopod: (0) four segments with a seta-like terminal process; (1) stout gonopod with one or two segments.
45. Number if spurs in $\&$ gonopod: (0) two; (1) three; (2) five to seven.
46. First anticle of 8 gonopod extended as a short process: (0) absent; (1) present.
47. Claw of \& gonopod: (0) simple (unipartite); (1) tripartite, dorsal and ventral accessory denticles present.
48. Tömōsvary organ large, positioned posteriorly on pleuritc: (0) absent; (1) present.
49. Maxillipede tecth progressively decreasing in size and spacing medially: (0) absent; (1) present.
50. Aciculae differentiated into two (outer and inner) rows: (0) absent (single row of aciculac); (1) present.
51. Accessory dentieles on dorsal part of mandible: (0) simple, triangular accessory denticles; (1) flattened, multifurcating scales; (2) tuberculate scales.
52. Tergal tuberculation: (0) ahsent nr faint; (1) strong, more pronounced in of of than $\%$?
53. Distitarsus of leg 15 divided: (0) undivided (single tarsomere); (1) divided intu two or more tarsomeres.
54. Curvature of distitarsil part uf leg: (0) straight; (1) curved.
55. Inscrtion of anteriur pretarsal accessory claw: (0) on dorsolateral side of main claw: (1) on ventrolateral side of main claw. Most henicopids have the anterior and pusterior accessory claws originating dorsolaterally on the main elau (Fig. 511 finr Easonobitis tridentatus; Fig. 1 G for Henicops maculanus). Sume spceies of Paralamyctes
(Parafomuctes) (Fig. 111) and Eumbetes sinuans (Fig. 1F) have the (Paralamuctes) (Fig. 1H) and Eumictes sintantral margin of the tha anterior accessory elew originating near the verralmargin of the main claw.
56. Definition of scutes on pretarsal accessory claws: (0) absent or weak: (1) strong (Edgecombe \& Giribet, 2003 a; character 57).
57. Definition of scutes on proximodorsal part of main pretarsal claw: (0) distinct: (1) indistinct (Edgecombe \& Giribct, 2003a: character 58).

TABLE 2. Codings for 57 morphological characters listed in Table 1.

Lithobius obscurus	0-0000-000 0011000000 0000000000 002200-000 0101001000 0000-00
Lithobius variegatus rubriceps	0-0000-000 7011000000 0000000000 002200-000 0101000000 0000-00
Ausiralobius scabriar	0-0000-000 7010000000 0000000000 002200-000 $01011010000000-00$
Bothropolys multidentatus	0-0010-000 2011000000 0000000000 002200-000 0101001000 0000-00
Shikakuobius japonicus	--000100010010001010 $001001000011120101-000000000002000000$
Dichelabius flavens	--000101012010001010 $001001000011100101-000000100002000001$
Anopsobius neozelanicus	-100101012110001000 $001001000011100111-000000100002000001$
Anopsohius sp. nov. NSW	-100101012110001010 001001000011100111 -0 00000100002000001
Anopsobius sp. nov. TAS	-10010101 $2010001010001001000011100111-000000100002000001$
Zygethobius pontis	100001000130000001000010010101100311300000000000000000000
Cermatobius japonicus	$11000100013001000100000001011110021120 ? 000001000000011000$
Lamyctes emurginatus	$10010100010020001001000100000110020101-000000000001000000$
Lamyctes africanus	$10010100010020001001000100000110020111-000100000001000000$
Lamyctes caeculus	-000100010020001001 0001000001 10020101-0 00??000100 1000000
Lamyctapristus validus	$10010100010021000001000 ? ? 0000110020131-00000200001 ? 1011 ? ?$
Lamyctopristus (Eumyctes) sinuatus	$10010100010001000001000100000110020131-000000000010101100$
Henicops maculatus	100102000110000000010001000001200201301110100000010010000
Henicops dentatus	100001000110000001010001000001200201301110100000010010000
Henicops sp. nov. QLD	100102000110000000010001000001200201301100100000010010000
Analamyctes tucumanus	100101000100000010010001000001100201200000000000000000000
Analamvctes andinus	100101000100200010010001000001100201300000000000001000000
Paralamycres (Paralamyctes) spenceri	100001010140010000011000000111100201200000000000000000000
Paralamyctes (Paralamyctes) asperulus	100001010140010001011000000111100201200000000000000000100
Paralamyctes (Paralanyctes) weberi	100001010140010000011000000111100201300000000000000000100
Paralanyctes (Paralamyctes) tridens	100001110130010000011000000111100201200000000000000000000
Paralamycres (Paralamyctes) manteithi	100011111130011000011000000111100201300000000000000000100
Paralamyctes (Paralamyctes) harrisi	100011111130011000011000000111100201300000000000000000000
Paralamycres (Paralumyctes) neverneverensis	100001010140000000011000000111100201400000000000000000000
Paralamyctes chilensis	100001010140000100010000000011100201300000000100000000000
Paralamyctes (Nothofagobius) cassisi	100001010140000100010100001011100201400000001100000000000
Paralumyctes (Nothofagobius) mesibovi	100001010140000100010100001011100201400000001100000000000
Paralamvetes (Thingathinga) grayi	110001011150010001010100000011100211301000000000000000011
Paralumyctes (Thinguthinga) ?grayi	110001011150010001010100000011100201401000000000000000011
Paralamyctes (Thingathinga) hornerae	$11000101115001000101010000001110 ? 201 ? 01000000000000000011$
Paralamvctes (Thingathinga) validus	100001011150010000010100100011100211401000000000000000011
Paralamyctes (Haasiella) trailli	-0001010160010000110000000011 10020121-0 00000001100000000
Paralamyctes (Ilaasiella) subicolus	$11000101015001000011000000001110020131-000000000100000000$
Paralanyctes (Huasiella) cammooensis	$11000101014000001011000000001110020111-000000001100000000$
Paralamyctes (Haasiella) ginini	$11000101014000001011000000001110020111-000000001000000000$
Easonobius humilis	$10010100010000000101000100000120 ? 201200000000000000070000$
Easonobius tridentatus	100101000110000001010001000001200201200000000000000000000

Analamyctes and Easonobius arc labile. Amongst the minimal length cladograms, the two species assigned to Easonobius have three alternative resolutions: monophyletic sister group of Henicops, monophyletic sister group of Analamyctes tucumanus, or paraphyletic with E.
tridentatus being closer to Henicops than is E. humilis.

Parsimony jackknifing favours a closer relationship between Easonobius and Henicops than with Analamyctes, the former grouping having a jackknife frequency of 58%.

Easonobius tridentatus in particular shares its shape of the maxillipede coxosternite (character 11:1) with Henicops, closely resembling species such as Henicops dentatus in having a gently convex dental margin with the outermost (third) tooth set well inward of the anterolateral corner (Fig. 5A, B). The coxosternal shape in E. humilis (Fig. 7A) is instead more similar to that of Analamyctes, Lamyctopristus and Lamyctes (character 11:0), and in some shortest cladograms the similarity between E. tridentatus and Henicops is a synapomorphy. A cluster of lacinate sctae amidst the simple setae on the coxal process of the first maxilla (character 31:2) is also shared by Easonobius (Fig. 6H) and all species of Henicops. A similarly positioncd group of three laciniate setac was described by Ribaut (1923, and Ribaut's unpublished drawings of the holotypc) in another New Caledonian species, Lamyctes brevilabiatus Ribaut, 1923. Molccular sequence data suggest that 'Lamyctes' brevilabiatus is nested within Henicops as the latter is traditionally delimited (Edgecombe \& Giribet, 2003b). This specics is excluded from Easonobius based on its indistinctly jointed tarsi on legs 1-12, unprojected tergites (c.g., transverse posterior margins of TTI1 and 13), and bipartite first genital sternite in the male. It is further distinguished at the species level from both known members of Easonobius by its more segimented antenna ($38-47$ articles in QM S60636, S60651, AM KS 82580, KS 82626) and extreme proximity ol the inner two teeth on the maxillipede coxosternite (distance between outer and middle teeth about 2.5 times that between middle and inner tooth).
Alternative relationships for Henicops are favoured in some of the shortest cladograms. In particular, Henicops and Lamyctopristus (including Eunyctes) sometimes unite to the exclusion of Easonobins, with this resolution being supported by a distal spinose projection on the tibia of log 14 (character 37:3) and mandibular aciculac differentiated into two rows (character 50:1).
Turning to Chamberlin's (1955) hypothesis that Easonobius humilis is especially closely related to South African species, an exemplar of the latter group, Paralamyctes asperulus. nests in a monophylctic Parulumyctes and, in most minimal length cladograms, in P. (Paralamyctes). That clade is defined by two unique mandibular characters (characters 21:1 and 28:1) as well as molecular synapomorphies (Edgecombe et al., 2002; Edgccombe \& Giribet, 2003a). The
classification of this and allied South African Paralamyctes with Easonobius humilis based on a singlc, highly homoplastic antennal character (Chamberlin, 1955), is emphatically rejected. The classification of Ribaut (1923), in which E. humilis was assigned to Paralanyctes based on its bipartitc tarsi on all legs (character 38:0). is opposed by the absence of a complete median furrow on the head shield (character 8:0; Fig. 4A) and a reduced, rather than bell-shaped, first maxillary sternite (character 29:0; Fig. 6F). The apomorphic homologues unite Paralamyctes (Edgccombc, 2001).

ACKNOWLEDGEMENTS

1 thank Suzanne Bullock, Sue Lindsay and Yongyi Zhen for their expert assistance with illustrations, electron microscopy, and image editing, respectively. Gcoff Monteith (Queensland Museum) provided collections from New Caledonia that made this study possible. Antoni Serra (Universitat de Barcelona) kindly reviewed the manuscript. Eduard Stoeckli loancd types from the Naturhistorisches Museum, Basel, and Jason Dunlop (Muscum für Naturkundc) hosted study in Berlin and arranged loans.

LITERATURE CITED

ANDERSSON, G. 1981. Taxonomical studies on the post-cmbryonic development in Swedish Lithobiomorpha (Chilopoda). Entomologiea scandinavica Supplement 16: 105-124.
1984. Post-embryonic development of Lamyctes fulvicornis Meinert (Chilopoda: Henicopidae). Entomologiea seandinaviea 15: 9-14.
ARCHEY, G. 1921. Notes on New Zealand Chilopoda. Transactions and Proceedings of the New Zealand Institute 53: 181-195.
1937. Revision of the Chilopoda of New Zealand. Part 2. Reeords of the Auekland Institute and Museum 2: 71-100.
ATTEMS. C. 1909. Myriapoda. Pp. 1-52. In Sehultze, L. (ed.) Zoologisehe und anthropologisehe Ergebnisse einer Forsehungsreise im westliehen und zentralen Süda frika ausgeführt in den Jahren 1903-1905. Denksehriften der Medizinisehnaturwissensehaflichen Gesellsehaft zu Zena 14 (Gustav Fischer: Jena).
1914. Die indo-australischen Myriapoden. Arehiv für Naturgeschichte, Abteilung A 4: 1-398.
1928. The Myriapoda of South Afriea. Annals of the South Afriean Muscunn 26: 1-431.
CHAMBERLIN, R.V. 1920. The Myriopoda of the Australian region. Bulletin of the Museum of Comparative Zoology at Harvard College 64: 1-269.
1951. On Chilopoda colleeted in North-East Angola by Dr. A. de Barros Machado. Museo do Dundo,

Subsídios para o Estudo da Biologia na Lunda. (Companhia de Diamantes de Angola, Servieos Culturais: Lisboa).
1955. The Chilopoda of the Lund University and Califormia Academy of Seience Expeditions. Reports of the Lund University Chile Expedition 1948-49. 18. Lunds Universitets Arsskrift 51: 1-61. (C.W.K. Gleerup: Lund).
EDGECOMBE, G.D. 2001. Revision of Paralamyctes (Chilopoda: Lithobiomorpha), with six new species from castern Australia. Records of the Australian Museum 53: 201-241.
2003a. Paralamyctes (Chilopoda: Lithobiomorpha: Henicopidae) from the Cape region, South Africa, with a new species from Table Mountain. Afriean Entomology 11: 97-115.
2003 b . The henicopid eentipede Haasiella (Chilopoda: Lithobiomorpha): new species from Australia, with a morphology-based phylogeny of Henieopidae. Journal of Natural History 37.
2003 e . A new species of the Gondwanan eentipede Anopsobius (Chilopoda: Lithobiomorpha) from New South Wales, Australia. Zootaxa 204: 1-15.
EDGECOMBE, G.D. \& G1R1BET, G. 2003 a. Relationships of Henicopidae (Chilopoda: Lithobiomorpha): new molecular data, elassifieation and biogeography, In Hamer, M. (ed.) Proeecdings of the 12 th International Congress of Myriapodology. African Invertebrates.
2003b. A new blind Lamyctes (Chilopoda: Lithobiomorpha) from Tasmania with an analysis of moleeular sequenee data for the Lamyctes-Henicops Group. Zootaxa 152: 1-23.

EDGECOMBE, G.D., GIRIBET, G \& WHEELER, W.C. 2002. Phylogeny of Henicopidac (Chilopoda: Lithobiomorpha): a combined analysis of morphology and five molceular loci. Systematic Entomology 27:31-64.
FARRIS, J.S., ALBERT, V.A., KÄLLERSJÖ, M., LIPSCOMB، D. \& KLUGE, A.G. 1996. Parsimony jackknifing outperforms neighborjoining. Cladisties 12: 99-124.
POCOCK, R.I. 1901. Some new Genera and Species of Lithobiomorphous Chilopoda. Annals and Magazine of Natural History 7: 448-451.
PORAT. C.O. von. 1893. Myriapoder från Vest- och Syd-Afrika. Bihang till Svenska Vetenskapsakademiens Handlingar 18: 1-15.
Ribaut, H. 1923. Chilopodes de la NouvelleCalédonie et des lles Loyalty. Pp. 1-79. In Sarasin, F. \& Roux. J. (eds) Nuva Caledonia. Reeherches scientifique en Nouvelle-Calédonie et aux Iles Loyalty. A. Zoology 3(1) (C.W. Kreidel's Verlag: Berlin).
SILVESTRI, F. 1903. Contribuzione alla eonoseenza dei Chilopodi. II. Nuove specie di Paralamyctes. Redia 1: 256-257.
SWOFFORD, D. L. 2002. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.0bl0. (Sinauer Associates: Sunderland, MA).

WÜRMLI, M. 1974. Ergebnisse der Österreichen Neukaledonien-Expedition 1965. Chilopoden. Annalen des Naturhistorisehens Muscums in Wein 78: 523-533.

NOTE ADDED IN PROOF

Anopsobius n. sp. NSW (Fig. 8, Table 2) has been formalised as Anopsobius wrighti Edgecombe, 2003e.

